
~ Pergamon Int. J. Multiphase Flow Vol. 22, No. 2, pp. 353-361, 1996 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0301-9322(95)00074-7  0301-9322/96 $15.00 + 0.00 

A NEW CRITERION FOR THE C O N T I N U O U S  OPERATION 
OF SUPERSETTLERS IN THE BOTTOM F E E D I N G  M O D E  

A. TRIPATHI and A. ACRIVOS 
The Benjamin Levich Institute, The City College of the City University of New York, 

New York, NY 10031, U.S.A. 

(Received 19 July 1995; in revised form 7 November 1995) 

Abstrac t - -By considering the hydrodynamic interaction between the suspension and the concentrated 
sediment in an inclined settler operation continuously in the bot tom feeding mode, a new upper bound is 
derived for the max imum value of  the volumetric feed rate which can be tolerated under a given set o f  
conditions. This criterion is distinct from the familiar P o n d e r - N a k a m u r a - K u r o d a  formula which results 
from applying simple kinematic arguments.  
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1. I N T R O D U C T I O N  

Consider a typical supersettler, sketched in figure 1, being operated continuously in the bottom 
feeding mode. We suppose that the feed consists of a well mixed monodisperse suspension of heavy 
spherical particles. As the suspension flows inside the settler under conditions where the particle 
Reynolds number is vanishingly small, the particles slip in the direction of gravity relative to the 
liquid and then form a concentrated sediment upon reaching the upper-facing surface of the settler. 
As a result, the interior of the settler contains three distinct fluid phases: (1) a particle free layer 
underneath the downward facing surface; (2) the bulk of the suspension where the particle volume 
fraction ~bs equals that in the feed; and (3) the sediment layer referred to above. It follows that, 
if the settler is long enough, all the particles will sediment out of the suspension and that the 
overhead product will consist only of pure liquid. Clearly, such a continuous operation is possible 
only if the sediment can flow freely under gravity along the upward facing wall so that the particles 
can be collected at the bottom of the settler and be removed. 

Let Q~0 and Qd0 denote, respectively, the volumetric flow rates, per unit depth, of the feed and 
that of the sediment at the bottom of the settler and let us suppose further that the particle volume 
fraction within the sediment equals the given value ~b d . Then, provided the overhead product is 
devoid of particles, we have, on account of an overall particle balance around the settler, that 

Qs, O ~bs- Qd, o ~d = O. [1] 

In addition, let us suppose that the sediment along the upward facing surface extends over a 
distance L* from the bottom of the settler, and let utf(c~s) denote the settling speed of a 
representative particle within the suspension, where ut refers to the Stokes settling speed of an 
isolated sphere and f(~bs) is the familiar settling hindrance function which, following the usual 
practice, is taken to depend only on ~ .  A second overall particle balance around the sediment layer 
then yields 

Qd0 ~bd = Qdo ~bs + L*~bs ut f(~b~) cos 0 [21 

and hence, on account of [1], 

Z*utf(~p~) c o s  0 
Q~ = [3] (1 - -  $ , / ~ b o )  
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Figure 1. View of the inclined settler showing the definitions of the variables used in the analysis. 

which relates Q,0 and L*. In particular, in a settler of given length L, the volumetric feed rate Qs0 
cannot exceed 

Lut(cks) cos 0 
Qso(max) = [4] 

(1 - ~,/4,~) 

if the overhead product is to remain free of particles. This is well known Ponder-Nakamura-  
Kuroda (PNK) formula (see Acrivos & Herbolzheimer 1979), modified to account for the presence 
of a sediment layer, which has played a key role in the design of supersettlers. 

The expression given above for the maximum volumetric feed rate presupposes that the interface 
between the clear fluid and the suspension--c.f, curve C in figure l--remains stable and that any 
waves which may be generated do not break and thereby entrain particles into the clarified liquid. 
The stability of the flow configuration within supersettlers has therefore been studied extensively 
both theoretically as well as experimentally by Davis et al. (1983) and by Leung & Probstein (1983). 
On the other hand, as was mentioned earlier, another condition for the continuous operation of 
supersettlers, and therefore of the applicability of the PNK formula, refers to the requirement that 
the sediment layer be able to flow under gravity, so that the particles which have already settled 
can be removed. As we shall see presently, for a certain range of parameters, this can lead to values 
of the maximum permissible volumetric feed rate Q~0 (max) which fall below those given by the 
PNK formula [4]. 

In two recent articles by Nir & Acrivos (1990) and by Kapoor & Acrivos (1995), the flow of a 
sediment layer that forms on an inclined plate in contact with a suspension of sedimenting particles 
above it, was investigated by means of a model in which the downward gravitational particle flux 
is opposed by a shear-induced particle flux due to gradients in the particle concentration and in 
the shear stress. In general, as a consequence of this balance, the particle concentration within the 
sediment will remain everywhere below its maximum value q~m ~ 0.58, at which the suspension 
viscosity becomes infinite, and hence the sediment is able to flow under the action of gravity. It 
was also shown, however, that, if the angle of inclination 0 falls below a critical value approximately 
equal to 10 ° for a wide range of ~b,, a steady operation is no longer feasible and that the thickness 
of the sediment layer will grow indefinitely with time. This results from the fact that, at a critical 
angle, the particle concentration in the sediment adjacent to the upward facing surface equals the 
maximum value ~b m and, therefore, that portion of the sediment, on account of its infinitely large 
viscosity, is unable to flow and remains attached to the plate (see Kapoor & Acrivos 1995). 

This analysis referred to above was, however, restricted to "low" aspect ratio settlers in which 
both the sediment and the clear fluid layers are everywhere very thin compared to the spacing, b, 
between the plates. But, from a practical point of view, one is primarily interested in the operation 
of "high" aspect ratio settlers, in which the thickness of the sediment and that of the clear fluid 
layer are comparable to b, because such settlers offer both increased efficiency as well as 
stability (see Davis et al. 1983). The flow of the suspension within a "high" aspect ratio vessel is 
accompanied, however, by a pressure drop along its length which opposes the downward flow of 
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the sediment, and hence, even if the conditions for the sediment flow set forth earlier by Kapoor 
& Acrivos (I 995) are satisfied, i.e. even if the particle volume fraction adjacent to the upward facing 
surface remains below Or., the increased pressure drop resulting from an increase in Q~0 will 
eventually prevent the sediment from reaching the bottom of the settler and be collected. This then 
places a restriction on the maximum value of Qs0 which is quite distinct from that given by [4]. 
It is the purpose of this paper to derive an expression for this upper bound on Q~0 which does not 
appear to have been given before. 

2. T H E O R E T I C A L  ANALYSIS 

Following Probstein et al. (1981) and Leung & Probstein (1983), we suppose that the settler is 
long enough relative to its width, so that the flow within each of the three phases, referred to earlier 
and depicted in figure l, is everywhere quasi-parallel.t In addition, we model the suspension and 
the sediment as effective Newtonian fluids having viscosities, relative to that of the clear liquid, 
equal to 2(0s) and 2(0o), respectively, where 0s and 0d are the corresponding particle volume 
fractions. Also, since it has been shown recently that, within a sediment flowing along the inclined 
plate, the particle concentration is, in general, fairly uniform, we shall take 0d to be a constant 
and shall estimate its value by referring to the results of the more elaborate calculations presented 
by Kapoor & Acrivos (1995). 

Under these circumstances then, the dimensionless Navier-Stokes equations within the clear fluid 
layer 0 < y  < 6(x) reduce to 

02u dP 
+ F sin 0 = 0 [5] 

0y2 dx 

where u is the longitudinal component of the bulk velocity rendered dimensionless with ut, y and x 
are, respectively, the transverse and longitudinal coordinates rendered dimensionless with b, the 
spacing between the plates and P is the dynamic pressure divided by ut I~r/b where/~f refers to the 
pure fluid viscosity. Finally 

_- 9(_by 
r b2gA------~POs=2\a,lut ltr 0~ [61 

where a is the radius of one of the spherical particles, g is the gravitational constant and Ap is 
the difference between the density of the solid particles and that of the fluid. Similarly, within 
6(x) < y  < ~(x) the region occupied by the suspension, we have 

02u dP 
2(0s) 0y 2 dx=O [7] 

while, within the sediment, ~ ( x ) < y  < 1, 

2(0d)~-~y2 d x + F  1 -  s i n 0 = 0 .  [8] 

Equations [5], [7] and [8], subject to the boundary conditions of no-slip at the two walls plus 
the requirement that the velocity and the shear stress be continuous across each of the two 
interfaces, can be readily integrated to yield the corresponding expressions for the velocities which 
are given in the appendix. Using these velocity profiles, we obtain the following expressions for 
the volumetric flow rates per unit depth, rendered dimensionless with but, 

I,~x) dP 
Q¢ - u dy  = F3 "~x + F4 F sin 0 [9] 

do 

tThis quasi-parallel assumption does not apply of course near x -- 0 and x = L*/b, i.e. within the entry and exist regions 
where inertia effects play an important role. For moderate values of the bulk Reynolds number, however, the lengths of 
these regions are comparable to b, and hence their influence can be neglected in "high" aspect ratio vessels for which 
L */b ~ 1. 
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~ (~) dP 
Q~=- udy =Fs--~x+F6FsinO [10] 

d~S(x) 

f l u --F7 dP Qo ---- -- dy = - F8 F sin 0 [11] 
~x) dx 

where the Fs are functions of 6 (x), ~ (x), ~s and ~d as given in the appendix. We note that, if 2 (~s) 
is set equal to unity, [9]-[11] become identical to those derived by Leung & Probstein (1983). 

Next, to determine the remaining unknowns, 6(x), ~(x) and dP/dx, we make use of the 
requirement that the particle flux be continuous across each of the two interfaces, y -- 6(x) and 
y = ~(x), and that the net volumetric flow rate Qnet ~ Q~ + Q ~-  ad be independent of  x. These 
conditions lead to, respectively, 

dQ___~=f((os)cosO, dQ~= ~bdf(~b~)cos0 and d Q d =  q~,f(qS~)cos0 [12] 
d x  d x  ( ~  - ~ )  d x  (~d - ~) 

On integrating these along the length of the settler, we obtain that 

Qc= xf(qS,)c °sO, Q~=O~.o X~df(~)s)COSO ~)s 
(q~d -- ~b~) and Oa = -~d o~' [13] 

where on account of [1], we have set Qd.0 = Q~0 ~bstPd • Note that [13] differs from [34]-[36] in Leung 
& Probstein (1983), who used an incorrect expression for the continuity of particle flux across the 
interface y = ~(x). Finally, on using the fact that both Q~(x) and Qd(X), as given by [13], must 
vanish at x = L*/b, we recover the expression for Q~,o given by [3], if the latter is rendered 
dimensionless by dividing both sides with b u  t . Thus, for a given dimensionless inlet feed rate Q~.0, 
we have that, as before 

L___~* = Q~.0 (~d - -  (J~S) [14] 
b ~d f(q~s) cos 0" 

As was said earlier, for a settler of finite length L, a necessary condition for the present analysis 
to apply is that L* ~< L, because, if the feed rate exceeds the maximum value given by [4], the excess 
suspension will leave the settler together with the clear fluid. 

In addition, however, we require that [9]-[14] have a solution with 6 = 0 at x = 0 and ~ = 1 at 
x = L*/b. We therefore examine the set, which we obtain by substituting the corresponding flow 
rates from [13] into [9]-[11], 

bx 
-F3F + flF4=L--- ~ [15] 

- -FsF+BF6=(4~d ~s) 1--~--~ [16] 

dp~ ( bx ) 
--F7F + flFs = (~d -- ~b~) \ L - ~ -  1 [17] 

where F and fl are given by, respectively, 

~d dP #(V, + F6 + e s ) -  1 
F - -  Os,o (t~d _ t~s ) d---~ = F3+Fs+F7 [18]  

~d sin 0 
/~ -- r Qs,0 (q~ - ~s)" [191 

Note that the relation between F and the other Fs given by [18] follows by adding [15]-[17], 
hence only two of the latter three equations are independent. 
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Now, given 4s, 4d and fl, it is a straightforward matter to determine 6 and ~, as functions of  
bx/L*, by solving the set of  non-linear algebraic equations [16], [17] and [18], or [15], [16] and [18], 
subject to the constraints: 6 = 0 at x = 0 and ~ = 1 at bx/L* = 1. The solution can begin, of  course, 
at either x = 0 or at x = L*/b. In addition, we require that, at x = 0, the velocity u within the 
sediment be negative or zero everywhere which means, in particular, that u ~ ,  the velocity along 
the suspension-sediment interface, cannot be positive at the entrance of  the channel. 

Now, on setting x = 0 and 8 = 0, we find that [15] is satisfied automatically and that, for a 
wide range of  fl, the remaining set of  equations yields two roots for ~(0), both lying between 0 
and 1, as shown in figure 2 for a typical choice of  4, and 4d. But, since (d~/dx)x=O < 0 for any 
computation starting from any point along the curve BD shown in figure 2, the constraint ~ = 1 
at bx/L* = 1 cannot be satisfied using the value of  ~(0) at that point as an initial condition. Also, 
the velocity along the suspension-sediment interface, u ~ ,  is positive along the curve CD where 
C denotes the location of  the point where u ~  = 0. It is found moreover that, as 4, decreases, 
C approaches point B where (d~/dx)x=0 = 0, and eventually crosses over to the lower branch BA 
(shown in figure 2 as C') when 4s falls below 0.0017 (for 4d = 0.52). Hence, as 4 ~ 0 ,  only the lower 
curve C'A is of  any significance. We conclude therefore that the system of  equations together 
with the constraints, as given above, has a unique solution. This was also pointed out by Leung 
& Probstein (1983). In addition, fl cannot fall below a minimum value flmi, given by the point B 
(or C' if 4s < 0.0017 for 4d = 0.52) in figure 2. This can also be demonstrated by starting the 
computations at bx/L* = 1 and ~ = 1 and then decreasing x. 

At high values of/3, corresponding to low feed flow rates Qs,0, the thicknesses of  both the clear 
fluid layer and that of  the sediment are small relative to the spacing between the plates and, hence, 
the device operates as a "low aspect ratio" settler. But with decreasing fl, i.e. with an increase in 
the feed flow rate Q,,0 and therefore in the amount  of  material that enters the settler as feed, there 
is an increase in the thickness of  the sediment layer at x = 0, as well as a corresponding increase 
in the pressure drop along the channel which opposes the downward flow of  the sediment. This 
tendency of  the flow to choke is illustrated in figures 3 and 4 for a typical choice of  4, and 4d. 
Moreover since, as shown in figure 2, there exists no solution for fl < flmi,, this places a restriction 
on the maximum permissible value of  Q,,0. The existence of  flmi., whose value depends only on 4, 
and 4d, appears to have been overlooked in the earlier investigation by Leung & Probstein (1983). 

U M F  2.2/2--J 
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Figure 3. Dimensionless velocity profiles, u,(y) and ud(y ), at x = 0 for 4~s = 0.01 and 4~d = 0.52. 
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Figure 6. Profiles ot: ~(x) and f(x) for I ,  = 0.01, ~d = 0.52 and fl = fl~,~n = 3.75. 

As was ment ioned earlier, flmi. is given by point  C" in figure 2 for  Ss < 0.0017 (when Sd = 0.52). 
But, on not ing that  u ~  = 0 at  C',  we can construct  the asymptot ic  solution o f  [16] and [18] at x = 0, 
as 4 , -*0,  and show after  some algebra that  

[ _ +, /tmi. - +  o) --  12 1 [2o] 

Numerical  results were obta ined for flmin, given by the condi t ion (dfldx)x.o = 0 (point B in 
figure 2) or  u,.~ = 0 for  q~, ~ 0 (point  C'). These are presented in figure 5 where we have plotted 
time,/flmi, (~, ~ 0) VS ~, with ~a as a parameter ,  while, shown in figure 6, are the profiles for  &(x) 
and ~(x)  for  ~, = 0.01, ~d = 0.52 and fl = fl~, = 3.75. Clearly, flmin is a sensitive function o f  ~d. 
Fo r  example,  when d~d is increased f rom 0.50 to 0.55, flmi, increases f rom 3.38 to 5.68 (for q~, = 0.01). 
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Returning now to the conditions for determining the maximum volumetric feed rate for given 
values of 4, and 4d, we see from [14] and [19] that the dimensional flow rate Q,,0 cannot exceed 
that given either by [4] or by 

bu, r sin 0 

flmin (bd 3 4s I(1 - 4s /bd ) 

WI 

whichever is smaller. This means that Q,,, (max) is given by the PNK formula, [4], for ecrit < 8 < rt /2, 
while, for 0 < 8 < ecrit, it equals [21], where 

La 

as obtained by equating [4] and [21]. We can also see readily that, for a settler of given dimensions, 
the global maximum permissible value of Qs,0 is reached when 8 = ecrit , in which case 

~231 

Note that +d is, strictly speaking, not an independent parameter since, in principle at least, one 
should be able to extend the analysis by Kapoor & Acrivos (1995) to high aspect ratio vessels and 
thereby determine the particle concentration profile within the sediment. In that case ecrit would 
be found to depend only on 4,. The analysis leading to that result, however, has not been attempted 
thus far. 

All the results referred to above pertain to the bottom feeding high aspect ratio settler, where the 
presence of a large pressure gradient, which opposes the downward flow of the sediment, introduces 
a constraint on the maximum permissible feed flow rate for continuous operation. In contrast, when 
the settler is operated in the top feeding mode, a simple analysis, along the lines given earlier, shows 
that the pressure decreases as one proceeds down the channel, which means that the resulting 
pressure drop aids rather than hinders the sediment flow. Thus, provided that the angle of 
inclination exceeds the critical value found earlier by Kapoor & Acrivos (1995) for the flow along 
an inclined plate of a concentrated sediment in contact with a stagnant sedimenting suspension, 
the presence of this sediment does not place an additional constraint on the maximum allowable 
feed rate. In other words, in a settler of effectively infinite length, the expression for Q,(max) 
derived earlier by Davis et al. (1983), for the case A($,) = I, 

Qs.o(max) = 
bu, r sin 8 

192 

would be expected to apply with only minor modifications. The above expression is, of course, 
similar to [21] which applies to the bottom feeding mode. But since, as was shown earlier, jImi,, is 
O(lO), we conclude that, in settling vessels of effectively infinite length, the maximum volumetric 
feed rate for the bottom feeding mode can exceed that for the top feeding mode by an order of 
magnitude under otherwise identical conditions. 

We conclude by noting that the results presented above are particularly significant in that they 
provide an improved theoretical basis for the design and optimal performance of supersettlers. 
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A P P E N D I X  

The solution of [5], [7] and [8] is: 

~3 6 2 
& = ~ + r , ~  

6: 63 
F4 = T(F2 + 6)--g- 

( 1 ) (  62 ) 
Fs=(¢3-a3)+F'(~2-6:)6Z(4,s-------)- 2Z(4,,) + 1 -2(~,) T +rF' (~ -6 )  

('2--62) " [ 6 ( I  2(; , ) )  F2 + ~ ]  (¢ - 6) 

F7 = ~ k l  F( 1 _6 ~3) ¢ (1 -2~:)F, (F 1 + 1/2)(1 - 4)] 

F, = - L  [-- (1 - ¢3)(q~"/4~'- 1) (1 - ¢2)[F2 - ¢(4 '~/4, , -  1)1 
~(,/'~) L 6 4- 2 

[(~ -- 1 /2)(~d/~, -  1 ) -  F2](1 - -~) / .  + 
J 

dP ) y2 
uc= ~xx-Fs in0  -~+cly 

us = 2-~s ) \-~x --f + c 3 y + c , 
/ 

U d = ~  ~ +  --1 rsinO ~+c~y+c~ 

dP 
q=c3+6F sinO c3=Fi--~x+ F2F sinO 

c,=~(~s) T+c3~ 1-~-~-~,) +Trs inO 

c, c3 1) s n0 

C6 = __~ (.~X ..]_ (~s _ l f d P  1)F sin O } - c 3 + , ( ~ - - l ) F s i n O  

FI=A/D and F2=B/D 

1 F ( ~ d / ~ , -  1)(¢ - 1) ~ 1 B =  -~L- ~ +~2j 
( ' )  (, 

D= 6 1 ).(~bs ~ +~ 2(~s) )-(~d) 2(~bd) 


